Ricerca
Italiano
  • English
  • 正體中文
  • 简体中文
  • Deutsch
  • Español
  • Français
  • Magyar
  • 日本語
  • 한국어
  • Монгол хэл
  • Âu Lạc
  • български
  • Bahasa Melayu
  • فارسی
  • Português
  • Română
  • Bahasa Indonesia
  • ไทย
  • العربية
  • Čeština
  • ਪੰਜਾਬੀ
  • Русский
  • తెలుగు లిపి
  • हिन्दी
  • Polski
  • Italiano
  • Wikang Tagalog
  • Українська Мова
  • Altri
  • English
  • 正體中文
  • 简体中文
  • Deutsch
  • Español
  • Français
  • Magyar
  • 日本語
  • 한국어
  • Монгол хэл
  • Âu Lạc
  • български
  • Bahasa Melayu
  • فارسی
  • Português
  • Română
  • Bahasa Indonesia
  • ไทย
  • العربية
  • Čeština
  • ਪੰਜਾਬੀ
  • Русский
  • తెలుగు లిపి
  • हिन्दी
  • Polski
  • Italiano
  • Wikang Tagalog
  • Українська Мова
  • Altri
Title
Transcript
Successivo
 

The Science of Snowflakes

Dettagli
Scarica Docx
Leggi di più
As the growing crystal drifts through clouds, it encounters varying temperatures and humidity levels, causing additional water vapor to freeze directly onto its surface. This interplay shapes the crystal into forms like simple plates, intricate stellar dendrites, or other familiar snowflake types. According to physicist Dr. Kenneth Libbrecht, snowflakes manifest in 35 distinct morphologies, shaped by three fundamental growth processes: faceting, branching, and sharpening. Faceting imposes geometric order, branching adds complexity, and sharpening refines the details.

A well-known study called the Nakaya diagram, shows how snowflakes change based on the conditions in the air. As it cools even more to -15°C, the classic snowflake shape begins to appear. Rarely, “split plates and stars” form when sudden changes in temperature disrupt the crystal’s growth, creating twin crystals attached at sharp angles. “Rimed snowflakes” form when crystals encounter supercooled water droplets, which freeze instantly upon contact with the crystal surface. These formations are important in avalanche forecasting, as fresh graupel layers often create unstable interfaces within the snowpack, increasing the risk of slides on steep terrain. While snowflakes’ six-fold patterns reflect the molecular geometry of ice crystals, perfect symmetry is rare. In reality, most snowflakes show subtle to significant differences across their six arms, making each one unique and charmingly imperfect.
Guarda di più
Ultimi programmi
35:32

Notizie degne di nota

198 Visualizzazioni
2025-01-04
198 Visualizzazioni
2025-01-04
2146 Visualizzazioni
37:14

Notizie degne di nota

180 Visualizzazioni
2025-01-03
180 Visualizzazioni
2025-01-03
166 Visualizzazioni
Condividi
Condividi con
Incorpora
Tempo di inizio
Scarica
Mobile
Mobile
iPhone
Android
Guarda nel browser mobile
GO
GO
Prompt
OK
App
Scansiona il codice QR
o scegli l’opzione per scaricare
iPhone
Android